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ABSTRACT: Reaction of the N,N0-diisobutyl-substituted
benzannulated N-heterocyclic plumbylene (NHPb) 1 with
[Pd(PPh3)4] and [Pt(PPh3)4] gave the complexes [M(NHPb)-
(PPh3)3] (M = Pd [2], Pt [3]). X-ray diffraction studies of
both complexes showed an angle of ∼125� between the
plumbylene plane and the transition-metal�Pb axis, indi-
cating coordination of the transition metal to the empty
π orbital of the plumbylene Pb atom. The experimentally
determined metric parameters of complexes [2] and [3] are
discussed on the basis of DFT calculations.

The synthesis and characterization of a few N-heterocyclic
plumbylenes (NHPbs) has been described.1 Contrary to

their lighter analogues, the N-heterocyclic carbenes,2 silylenes,3,4

germylenes,4,5 and stannylenes,4,6 the coordination chemistry of
the potentiallymonodentateNHPbs has not been explored to date.
The literature contains only one report describing an adduct of a
benzannulated NHPb7 in addition to few reports on compounds
featuring bonds between lead and palladium or platinum.8�10

In general, the lighter analogues of N-heterocyclic plumby-
lenes, in particular the N-heterocyclic carbenes (NHCs), are
known to be excellent ligands for various transitionmetals.2 They
normally form complexes in which the CNHC�Mbond is oriented
in a coplanar fashion relative to the plane of the N-heterocycle,
leading to planar units of the type M�C(NRR0)2. Only a few
exceptions to this rule are known, most of which result from
steric crowding at the metal center or the presence of very bulky
N,N0-substituents on the NHC ligand.11 We initiated the present
study to investigate whether this geometric situation would persist
for complexes of the heavier analogues of NHCs, in which the
sp2-σ orbital becomes less nucleophilic and the unoccupied p-π
orbital becomesmore Lewis acidic.We selected theN-heterocyclic
plumbylene 1 (Scheme 1) and studied its coordination chemistry
with Pd0 and Pt0 complexes.

The preparation of 1 has been described previously.1a The
NHPb complexes [Pd(1)(PPh3)3] [2] and [Pt(1)(PPh3)3] [3]
were prepared by reacting 1 equiv of 1 with [Pd(PPh3)4] and
[Pd(PPh3)4], respectively, over 3 days in toluene at ambient
temperature (Scheme 1). Initiation of the reaction could be
detected visually by a color change of the reaction mixture from
red to dark-purple in the case of the palladium complex and to

blue-green in the platinum case. Concentration of the reaction
solution and cooling to�20 �C allowed the isolation of complexes
[2] and [3] as dark-purple and dark-blue-green solids, respec-
tively [see the Supporting Information (SI)]. Like plumbylene 1,
the plumbylene complexes [2] and [3] are very sensitive toward
oxygen and moisture. The complexes are soluble in toluene and
benzene.

The benzannulated NHPb can substitute one triphenylpho-
sphine ligand in the coordination sphere of Pd0 or Pt0. Complexes
with more than one plumbylene ligand could not be obtained
even when an excess of up to 4 equiv of 1 was reacted with
[Pd(PPh3)4] or [Pt(PPh3)4].

The 1H and 13C{1H} NMR spectra for both complexes
exhibited the features expected for the plumbylene and phosphine
ligands. In the 31P{1H} NMR spectra, broad signals were found
at 11.5 ppm for [2] and 42.8 ppm (with 195Pt satellites, lJP,Pt =
4422 Hz) for [3]. The 195Pt{1H}NMR spectrum of [3] showed
a broad resonance at �1016 ppm.

Crystals of [2] 3 2C7H8 and [3] 3 2C7H8 suitable for X-ray
diffraction analyses (see the SI) were obtained by cooling
saturated toluene solutions of the complexes to �20 �C. The
molecular structures of the complexes are depicted in Figure 1.
The crystal structures of [2] 3 2C7H8 and [3] 3 2C7H8 are essen-
tially isostructural. The transition-metal atom in each complex is
surrounded in a strongly distorted tetrahedral fashion by the
plumbylene and three triphenylphosphine ligands. The Pd�Pb
separation in [2] [2.8214(3) Å] is shorter than the Pt�Pb separa-
tion in [3] [2.8558(2) Å], while all three Pd�P distances in [2]
[2.3352(8)�2.2773(8) Å] are longer than the Pt�P distances in
[3] [2.2920(10)�2.3210(10) Å]. The important metric para-
meters of the plumbylene ligands (Pb�N distances, N�Pb�N
angle) in the two complexes are identical within experimental error,
and the Pb�N distances in the coordinated plumbylene ligand
are slightly elongated relative to the free plumbylene.1a The five-
membered heterocycles of the plumbylene ligands in both com-
plexes are essentially planar.

The most striking features of the molecular structures of [2]
and [3] are the range of the angles at the transition metal and the
orientation of the plumbylene ligands in the complexes. Appar-
ently because of steric crowding, all of the P�M�P angles in [2]
and [3] [110.61(3)�121.53(3)�] are larger than the tetrahedral
angle, while the Pb�M�P angles [92.08(3)�105.11(2)�] are
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significantly smaller. The angles between the two vectorsNNfPb
(where “NN” represents the midpoint between the two nitrogen
atoms of the plumbylene ligand) andPbfM(M=Pd, Pt) measure
125.5� in [2] and 124.5� in [3].

For the lighter carbene, silylene, germylene, and stannylene
analogues of 1, sp2 hybridization of the subvalent group-14 atom
(EII) is normally assumed, leading to a singlet state with a filled
sp2 hybrid orbital and an empty p orbital. Coordination of these
N-heterocyclic ligands to transition metals occurs via interaction
of the filled sp2 orbital with an empty orbital on the transition
metal, leading to a coplanar arrangement of the four atoms in the
N2E

IIfMmoiety. The geometrical parameters found for [2] and
[3], in particular the small angle between the NN�Pb and
Pb�Mvectors, indicate a different mode of bonding in which the
transition metal (Pd0 or Pt0) acts as a d-electron donor and the
empty p orbital at the PbII atom functions as an acceptor. The
unshared electron pair in the Pb sp2 hybrid orbital remains un-
affected by this type of bonding.

A related bonding situation has been observed in the NHC
adducts of a dialkylplumbylene12 and anN-heterocyclic stannylene,13

where the NHC acts as base toward the Lewis acidic p orbital of
the plumbylene and stannylene, respectively. The empty p orbital
also acts as an acceptor orbital in dimeric plumbylenes.14 To the
best of our knowledge, donor interactions of electron-rich transi-
tion metals with Lewis acidic plumbylenes like those observed
here in [2] and [3] have not been described to date.

To obtain a better understanding of the unusual mode of bond-
ing between the plumbylene and the transition metal, we studied
complexes [2] and [3] using state-of-the-art dispersion-corrected
density functional theory (DFT-D3;15 for technical details, see

the SI). Our experimental structural data nicely agree with those
obtained from the DFT calculations. The calculated Pb�Pd and
Pb�Pt bond lengths agree with the experimentally determined
values only when the intramolecular dispersion corrections are
taken into account (Table 1, TPSS-D3(BJ) vs TPSS). This supports
previous findings of the importance of intramolecular dispersion
effects in (transition)metal complexeswith large and bulky groups.16

The seemingly better agreement for the Pd�Pb�NN bending
angle in the uncorrected TPSS calculation is attributed tomissing
neighbor molecules, which were absent in our single-molecule
treatment and would “open” the structure in a periodic DFT-D3
calculation on the crystal (for a recent example, see ref 17).

To provide further illustration and explanation of the bonding
situation in compounds [2] and [3] and to investigate the trend
in the bonding mode of group-14 carbene analogues, we per-
formed calculations on the model compounds [1,2-bis(N,N0-
dimethylamido)benzene]EII (E = C, Si, Ge, Sn, Pb) bound to
{(H3P)3Pd} and {(H3P)3Pt} complex fragments. These results
indicated a continuous change from an sp2(EII)fd(M) to a
d(M)fp(EII) donor�acceptor orbital interaction bonding mode
for the series of divalent group-14 ligands coordinated to Pd0 and
Pt0. The NN�EII�Pd angle changed from practically linear for
the carbene and silylene ligands to∼141� for the germylene ligand
and ∼101� for the stannylene ligand. An almost perpendicular
arrangement of the plane of the heterocycle relative to the
Pd�Pb bond (NN�Pb�Pd angle = 91�) was calculated for
the plumbylene derivative (Figure 2). The angle calculated for the
model compound is 34.5� smaller than the value observed for [2],
which can be attributed to steric repulsion between the plumby-
lene and phosphine ligands in the real system. Details of an orbital-
based bonding analysis are given in the SI.

In summary, we have prepared and characterizedN-heterocyclic
plumbylene Pd0 and Pt0 complexes and established an unusual
bonding mode in these derivatives that is apparently caused by
the interaction of filled orbitals of the transition-metal center with
the empty p orbital of the plumbylene. This type of interaction
leads to a decrease in the NN�Pb�Mangles to values of∼125�.
DFTcalculations on a sterically less congestedPd0model compound
showed an even greater decrease in the NN�Pb�Pd0 angle to

Scheme 1. Synthesis of Complexes [2] and [3]

Figure 1. Molecular structures of (left) [2] and (right) [3]. Hydrogen
atoms and solvent molecules have been omitted for clarity. Selected bond
lengths (Å) and angles (deg) for [2] [[3]]:M�Pb, 2.8214(3) [2.8558(2)];
Pb�N1, 2.190(3) [2.198(4)]; Pb�N2, 2.185(3) [2.192(3)]; M�P1,
2.3352(8) [2.2920(10)]; M�P2, 2.3451(8) [2.2960(10)]; M�P3,
2.3773(8) [2.3210(10)]; Pb�M�P1, 92.51(2) [92.08(3)]; Pb�M�P2,
103.97(2) [103.75(2)]; Pb�M�P3, 105.11(2) [103.06(2)]; P1�M�P2,
118.27(3) [118.58(4)]; P1�M�P3, 110.61(3) [111.20(4)]; P2�M�P3,
120.83(3) [121.53(3)]; N1�Pb�N2, 75.15(11) [74.78(13)].

Table 1. Experimental and Calculated (DFT-TPSSa) Bond
Parameters for Complexes [2] and [3]b

X-ray data TPSS-D3(BJ) TPSS

Complex [2]

Pb�Pd 2.8214(3) 2.823 2.905

Pb�Nc 2.187 2.237 2.226

P�Pd 2.3352(8)�2.3773(8) 2.313�2.332 2.376�2.411

Pd�Pb�NNd 125.5 117.0 128.9

De 37.4 4.0

Complex [3]

Pb�Pt 2.8558(2) 2.856 2.969

Pb�Nc 2.195 2.223 2.231

P�Pt 2.2920(10) � 2.3210(10) 2.292 � 2.308 2.336 � 2.337

Pt�Pb�NNd 124.5 117.3 126.9

De 38.9 3.5
aBasis sets: def2-TZVP (�f for C, N); def2-QZVP for Pd/Pt and Pb.
bBond lengths are given in Å, bond angles in deg, and dissociation
energies (De) in kcal/mol. cAverage of the two values. dNN = midpoint
between the two nitrogen atoms of the plumbylene.
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∼90�, which also supports the proposed new d�p-type interac-
tion. The DFT calculations also confirmed the experimental
observation that the lighter N-heterocyclic EII compounds
(carbenes and silylenes) bind to Pd0 via the filled sp2 hybrid
orbital, leading to a planar arrangement of the four atoms of
the N2E

IIfPd0 moiety. Intramolecular dispersion interactions
substantially influence the computed structures and should be
included in accurate treatments of large molecular systems.
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Figure 2. Energy as a function of NN�EII�Pd bending angle for
N-heterocyclic plumbylene, stannylene, germylene, silylene, and car-
bene ligands bonded to Pd0.


